Monatshefte für Chemie 117, 689-693 (1986)

Determination of the Stereochemistry of Rotenoids by 1 H-NMR Spectroscopy in C₆D₆

Ivanka Kostova*, and Iliya Ognyanov

Institute of Organic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria

(Received 10 April 1985. Accepted 10 May 1985)

The application of ¹H-NMR spectroscopy in C_6D_6 for the determination of configurations at C_{12a} and C_{6a} in rotenoids is discussed.

(Keywords: Rotenone; Rotenoids; Stereochemistry; ¹H-NMR)

Bestimmung der Stereochemie von Rotenoiden mittels $^1\mathrm{H}\text{-}NMR\text{-}Spektroskopie$ in $\mathrm{C_6D_6}$

Es wird die Anwendung der ¹H-NMR-Spektroskopie in C_6D_6 zur Bestimmung der Konfigurationen an C_{12a} und C_{6a} in Rotenoiden diskutiert.

Introduction

The cis-B/C fused rotenoids differ from the *trans* isomers in their ¹H NMR spectra by the chemical shift of 1-H and the splitting pattern of the protons at 6a, 12a, and 6 positions. It is known, however, that there is no way to distinguish the two cis $6a\beta$, $12a\beta$, $5'\beta$ and $6a\alpha$, $12a\alpha$, $5'\beta$ diastereomers by their ¹H NMR spectra in CDCl₃; thus CD and ORD data had to be used¹.

Recently, we have reported² the correlation between the ¹H NMR spectra in C_6D_6 and the stereochemistry of four diastereomeric pairs (6a β , 12a β , 5' β and 6a α , 12a α , 5' β) of 12a-CH₂OH derivatives of rotenone (*Rt*) **1** a and amorphigenin (*Amg*) **2** a and their acetates, whose absolute configurations had been determined by CD. In this communication we report further investigation on ¹H spectra of *cis*-B/C rotenoids **1–8** with different substituents at C_{12a} and C_{8'}, and propose the application of ¹H NMR spectra in C₆D₆ for the determination of the stereochemistry of B/C-ring juncture.

1 a, b : $R = R^{1} = H$	9 a, b : $R = CH_2OH, R^1 = H$
2a : $R = H, R^1 = OH$	10 a, b: $R = CH_2OAc, R^1 = H$
3 a, b, c, d : $R = OH, R^1 = OH$	-
4 a , b : $R = OH, R^1 = H$	
5 a, b : $R = CH_2OCHO, R^1 = H$	a $6a\beta$, $12a\beta$, $5'\beta$ ($6aS$, $12aS$, $5'R$)
6 a , b : $R = CH_2Cl, R^1 = H$	b $6a\alpha$, $12a\alpha$, $5'\beta$ ($6aR$, $12aR$, $5'R$)
7 a, b: $R = CH_2OCHO, R^1 = Cl$	c $6a\beta$, $12a\alpha$, $5'\beta$ ($6aS$, $12aR$, $5'R$)
8 a , b : $R = CH_2Cl, R^1 = Cl$	d $6a\alpha$, $12a\beta$, $5'\beta$ ($6aR$, $12aS$, $5'R$)

Results and Discussion

The pertinent NMR data of all compounds studied are presented in Table 1. The spectra of the four possible isomers of 12a-OH Amg^1 , i.e. $6a\beta$, $12a-\beta$ OH Amg **3a**, $6a\alpha$, $12a-\alpha$ OH Amg **3b**, $6a\beta$, $12a-\alpha$ OH Amg **3c**, and $6a \alpha$, 12 a- β OH Amg 3d illustrate the type of B/C-ring juncture: 1-H appears at ~ δ 7.00 for the *cis*-fused rotenoids, and ~ δ 8.00 for the *trans* fused isomers (Table 1). The spectra of natural Rt (1 a, $6a\beta$, $12a\beta$, $5'\beta$) and mutarotenone (1 a, b, $6a\beta$, $12a\beta$, $5'\beta$ and $6a\alpha$, $12a\alpha$, $5'\beta$), prepared by a known procedure³, were also recorded (Fig. 1). In all other cases the NMR spectra of diastereomeric mixtures $(6a\beta, 12a\beta, 5'\beta)$ and $6a\alpha$, $12a\alpha$, 5' β) were recorded and the assignments were performed by comparison of the spectra of 1 a, 1 a, b, 3 a, 3 b, 3 c, 3 d, and of the spectra reported² for the four diastereomeric pairs of 12a-CH₂OH derivatives of 1 a and 2 a. The data of all compounds are in excellent agreement with our previous observations. For all diastereomeric mixtures the resonances of 5'-H, 4'-H₂ and 8'-CH₃ protons were those most appropriate for solving stereochemical problems. It should be pointed out that, despite of the partial overlapping of signals, the signals of 4'-H₂ and 8'-CH₃ were wellresolved and characteristic patterns could be used to identify each diastereomer (Fig. 1). The ratio of the diastereomers ($\sim 1:1$) was determined by integrating the 5'-H, 4'-H₂ or 8'-CH₃ signals.

As discussed⁴ previously, the assignment of the two fourline signals (doublets of doublet) to a specific 4' proton is ambiguous, because of the small difference between the vicinal coupling constants (8.5 Hz and

Comp. ^b	6a	12a	5′-αH	4'-αH	4′-βΗ	8'-CH ₃ or —CH ₂	1-H
1 a	β	β	4.71 t°	2.69 d	2.69 d	1.46 s	7.19 s
1 a, b	eta lpha	eta lpha lpha	4.71 t 4.86 t	2.69 d 2.86 dd	2.69 d 2.58 dd	1.46 s 1.29 s	7.19 s 7.19 s
3 a 3 b 3 c 3 d	β α β α	β α α β	4.75 t 4.91 t 4.95 t 5.08 t	2.67 dd 2.75 dd 2.90 dd 2.96 dd	2.72 dd 2.51 dd 2.86 dd 2.83 dd	3.60 d, 3.49 d 3.79 bs 3.79 bs 3.79 d, 3.71 d	6.92 s 6.79 s 8.11 s 8.14 s
4 a, b	eta lpha	eta lpha	4.58 t 4.76 t	2.57 d 2.74 dd	2.57 d 2.50 dd	1.42 s 1.22 s	6.84 s 6.84 s
5 a, b 6 a, b	eta lpha	eta lpha	4.69 t 4.92 t	2.68 d 2.87 dd	2.68 d 2.58 dd	1.47 s 1.28 s	7.03 s 7.03 s
7 a, b 8 a, b	eta lpha	$egin{smallmatrix} eta\ lpha \ lpha \ \end{pmatrix}$	4.82 t 5.09 t	2.70 dd 2.85 dd	2.75 dd 2.48 dd	overlapped with other protons	7.01 s 7.02 s

Table 1. ¹H chemical shifts in C₆D₆ of selected protons in rotenoids 1-8^a

^a The protons whose chemical shifts are closely depending on the stereochemistry are presented; estimated accuracy 0.01 ppm for the chemical shifts and 0.3 Hz for the coupling constants; J in Hz: 5'- α H, 4'- α H ~ 10.0 Hz, 5'- α H, 4'- β H ~ 8.5 Hz, 4'- α H, 4'- β H ~ 16.0 Hz.

^b The letters **a** and **b** (or **c** and **d**) denote that NMR spectra of pure diastereomers were studied, while the letters **a**, **b** denote diastereomeric mixtures. ^c The expected dd (J = 10.0 Hz and 8.5 Hz) for 5'-H appears as a triplet.

Fig. 1. ¹H NMR pattern of 5'-H, 4'-H₂ and 8'-CH₃ protons of natural rotenone **1 a** (6a β , 12a β , 5' β) and mutarotenone **1 a**, **b** (a mixture of 6a β , 12a β , 5' β and 6a α , 12a α , 5' β)

10.0 Hz). This assignment was however possible by the use of the solvent shifts $\Delta = \delta_{\text{CDCl}_3} - \delta_{C_6D_6}$ of 4', 5' and 8' protons of the compounds studied (Table 2). In this table 4'-Ha designates the proton with the larger J(=10.0 Hz) and 4'-Hb the proton with the smaller J(=8.5 Hz). In C_6D_6 the 5'-H and 4'-Ha of all $6a\beta$, $12a\beta$ -compounds are shifted upfield, whereas 8'-CH₃ and 4'-Hb of all $6a\alpha$, $12a\alpha$ -compounds show greater upfield shifts. This indicates that 8'-CH₃ and 4'-Hb are on the same β -face of the molecule, whereas 5'-H and 4'-Ha are on the α -face, i.e. 4'-Ha is 4'- α H, and 4'-Hb is 4'- β H. Therefore, $J_{5',4'-\alpha}$ H is 10.0 Hz (J_{cis}) and $J_{5',4'-\beta}$ H is 8.5 Hz (J_{trans}). This confirms previous studies ⁵ that the Karplus equation holds for 2,3-dihydrobenzofurans and $J_{cis-2,3} > J_{trans-2,3}$.

Comp.	5'-	5′-αH		$4'-\text{Ha} \equiv 4'-\alpha\text{H}$ $J = 10.0 \text{Hz}$		$4'-Hb \equiv 4'-\beta H$ $J = 8.5 Hz$		8'-CH ₃	
	Stereochemistry at 6a and 12a positions								
	β, β	α, α	β, β	α, α	β, β	α, α	β, β	α, α	
1 a, b	0.53	0.40	0.62	0.43	0.28	0.42	0.30	0.43	
5 a, b	0.57	0.39	0.60	0.40	0.26	0.39	0.29	0.44	
6 a, b	0.59	0.39	0.60	0.42	0.29	0.39	0.32	0.46	
9 a, b	0.60	0.47	0.66	0.47	0.30	0.43	0.29	0.44	
10 a, b	0.56	0.43	0.58	0.39	0.30	0.39	0.26	0.42	
Mean values									
$ar{\Delta}$	0.57	0.41	0.61	0.42	0.29	0.40	0.29	0.44	
$\overline{\Delta}_{eta,eta}$ — $\overline{\Delta}_{lpha,lpha}$	+ (+0.16		+0.19		0.11		0.15	

Table 2. Solvent shifts ($\Delta = \delta_{CDCl_3} - \delta_{C_6D_6}$) of 4'-H₂, 5'-H and 8'-CH₃ protons

A comparison of the average values (Table 2) of the solvent-induced shifts of 5', 4' and 8' protons for the 6a β , 12a β ($\overline{\Delta}\beta$, β) and 6a α , 12a α ($\overline{\Delta}\alpha, \alpha$) compounds revealed that β,β -compounds showed larger $\overline{\Delta}\beta, \beta$ — $\overline{\Delta}\alpha, \alpha$ for 5'-H and 4'- α H (0.16 and 0.19 ppm, respectively), while those for 4'- β H and 8'-CH₃ were found larger in the α,α -compounds (0.11 and 0.15 ppm, respectively). The remaining protons (1-H, 2,3-OMe, 10-H, 11-H, 6 eq, 6 ax, 12a-CH₂) showed no significant difference in $\overline{\Delta}\beta,\beta$ — $\overline{\Delta}\alpha,\alpha$ (less than 0.05 ppm) except 4-H (\sim 0.07 ppm); integration of the latter proton signal allows a quantitative analysis of diastereomeric mixtures.

692

These results demonstrate a specific correlation between the solventinduced shifts of 5'-H, 4'-H₂ and 8'-CH₃ and the configurations of 6a and 12a chiral centres—probably caused by formation of different solventsolute complexes.

It is concluded that the ¹H NMR spectra in C_6D_6 of rotenoids possessing an *E*-dihydrofuran ring could be used for stereochemical assignments: a) the chemical shift of 1-H for determination of the type of B/C-ring fusion; b) the pattern of 4'-H₂, 5'-H and 8'-CH₃ for configurational determination at 6a and 12a positions of the *cis*-B/C fused rotenoids with a known configuration at $C_{5'}$.

Experimental

¹H NMR spectra were measured (*TMS* as internal standard, chemical shifts in ppm, *J* in Hz) on a Brucker WM 250 spectrometer. The chemical shifts and the coupling constants of 4'-H₂ and 5'-H were estimated by first-order analysis of the ABX system. Compounds **4-8** (diastereomeric mixtures—6a β , 12a β , 5' β and 6a α , 12a α , 5' β) were prepared from diastereomeric mixtures (6a β , 12a β , 5' β and 6a α , 12a α , 5' β) of the 12a-CH₂OH derivatives of **1a** and **2a**, and will be reported elsewhere⁶.

Acknowledgement

We acknowledge with appreciation the partial financial support received from the UNDP/UNESCO Project BUL 77/009.

References

- ¹ Unai T., Yamamoto I., Cheng H. M., Casida J. E., Agr. Biol. Chem. **37**, 387 (1973).
- ² Kostova I., Ognyanov I., Z. Naturforsch. 38 b, 761 (1983).
- ³ Crombie L., Godin P. J., Whiting D. A., Siddalingaiah K. S., J. Chem. Soc. 1961, 2876.
- ⁴ Carlson D. G., Weisleder D., Tallent W. H., Tetrahedron 29, 2731 (1973).
- ⁵ Armarego W. L. F., Stereochemistry of Heterocyclic Compounds, Part II, p. 57. New York: J. Wiley. 1977.
- ⁶ Kostova I., Ognyanov I., unpublished data.

Verleger: Springer-Verlag KG, Mölkerbastei 5, A-1010 Wien. — Herausgeber: Österreichische Akademie der Wissenschaften, Dr.-Ignaz-Seipel-Platz 2, A-1010 Wien, und Gesellschaft Österreichischer Chemiker, Eschenbachgasse 9, A-1010 Wien. — Redaktion: Währinger Straße 38, A-1090 Wien. — Hersteller: Adolf Holzhausens Nachfolger, Kandlgasse 19-21, A-1070 Wien. — Verlagsort: Wien. — Herstellungsort: Wien. — Printed in Austria.